Fundamental Study on Neutron Spectrum Unfolding using Maximum Entropy and Maximum Likelihood Method

نویسندگان

  • Shigetaka MAEDA
  • Hideki TOMITA
  • Jun KAWARABAYASHI
  • Tetsuo IGUCHI
چکیده

We present a novel spectrum unfolding code, Maximum Entropy and Maximum Likelihood Unfolding Code (MEALU), based on the maximum likelihood combined with the maximum entropy method, which can determine a neutron spectrum without requiring an initial guess spectrum. We present the basic theory, limitations and assumptions built into the implementation. The performance is checked through an analysis of mock-up data. The results are compared with those obtained by conventional methods for neutron spectrum unfolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutron Spectroscopy with Scintillation Detectors using Wavelets

...................................................................................................................... iii ACKNOWLEDGEMENTS ................................................................................................ v DEDICATION ................................................................................................................... vi LIST OF TABLES ................

متن کامل

A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian Markov random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting model, which we call maximum entropy unfolding (MEU) is a nonlinear generalization of principal component analysis. We relat...

متن کامل

Probabilistic Spectral Dimensionality Reduction

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting probabilistic models are based on GRFs. The resulting model is a nonlinear generalization of principal component analysis. We show ...

متن کامل

Spectral Dimensionality Reduction via Maximum Entropy

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which is in turn inspired by maximum variance unfolding. The resulting probabilistic models are based on GRFs. The resulting model is a nonlinear generalization of principal component analysis. We show ...

متن کامل

Unfolding X-ray spectrum in the diagnostic range using the Monte Carlo Code MCNP5

Introduction: Unfolding X-ray spectrum is a powerful tool for quality control of X-ray tubes. Generally, the acquisition of the X-ray spectrum in diagnostic radiology departments is complicated and difficult due to high photon flux. Measurement of x ray spectra using radiation detectors could not be performed accurately, because of the pulse pile up. Therefore, indirect methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011